

Development and optimization of cell-targeted lipid nanoparticles (ctLNPs) for selective delivery to T-cells

Anthony Brouillard, Douglas Rose, Brandon Johnston, Pei-Ni Tsai, Bee Abrahamsen, Sachit Shah, Declan Gwynne, Viktoriya Syrovatkina, Connie Martin, Tiffany Tate, Raphael Gagne, Yao Xin, Kelly Huynh, Christian Slubowski, Matt Stanton, Nate Silver, Di Bush, Phillip Samayoa; Generation Bio, Cambridge MA 02142

Acknowledgement: This work was completed in part with Moderna Inc.

Generation Bio's Cell-Targeted Lipid Nanoparticle (ctLNP) Platform for Targeted siRNA Delivery

Robust, Persistent Knockdown with siRNA

Stealth LNP Avoids Hepatic Uptake and is Retargetable

Stealth LNP Avoids Hepatic Uptake and is Retargetable

Untargeted Stealth LNPs Avoid Hepatic Biodistribution and Clearance In Vivo

and the second

Stealth Properties Driven by Optimization of Ionizable and Polymer-Lipid

Stealth LNP is Redosable and Avoids Accelerated Blood Clearance

Polyglycerol (PG) Paves the Way as Alternative to

With anchored polymers incurring some amount of B-cell recognition and accelerated blood clearance, our aim is to investigate and understand the substitution of PEG-lipid with PG-lipid to take advantage of its improved stealth properties.

cells through the Live

lation bind to LNPs

Addition of Targeting Ligand Does Not Inhibit Redosability

Careful design and optimization of targeting ligand chemistry on a PG-containing ctLNP allows for successful conjugation and in vivo T-cell targeting without decreased circulation time in blood after repeat dosing

generation bio